TY - GEN
T1 - A computational investigation of high reynolds number compressible boundary layers
AU - Ferguson, Frederick
AU - Feng, Dehua
AU - Gao, Yang
N1 - Publisher Copyright:
© 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2020
Y1 - 2020
N2 - Predicting the velocity, the temperature and the heat transfer rates within compressible boundary layers remains a challenging problem. Under compressibility and high Reynolds conditions, the density variations become very significant, resulting in high heat transfer rates. The net result is an altering of the dynamics within the boundary layer that is significantly different from its laminar counterpart. Physical properties, such as the specific heat capacities, the viscosity and the thermal conductivity, which are often considered constant, now vary with respect to temperature, creating a strong coupling between the velocity and the temperature fields. Despite the progress made in this field of research, a common issue frequently expressed in the literature is the difficulty in acquiring high quality time-resolved velocity and temperature data in compressible flows, especially near the wall. The major objective of this study is to demonstrate the capabilities of the Integral-Differential Scheme (IDS) by solving the flow field challenges within compressible boundary layers. It was demonstrated that IDS have the capability of accurately solving the full Navier-Stokes equations under realistic conditions. In the case of the compressible boundary layer, the IDS capture the flow field physics. However, it was demonstrated that the IDS is highly sensitive to grid resolution as well as the prescribed boundary conditions.
AB - Predicting the velocity, the temperature and the heat transfer rates within compressible boundary layers remains a challenging problem. Under compressibility and high Reynolds conditions, the density variations become very significant, resulting in high heat transfer rates. The net result is an altering of the dynamics within the boundary layer that is significantly different from its laminar counterpart. Physical properties, such as the specific heat capacities, the viscosity and the thermal conductivity, which are often considered constant, now vary with respect to temperature, creating a strong coupling between the velocity and the temperature fields. Despite the progress made in this field of research, a common issue frequently expressed in the literature is the difficulty in acquiring high quality time-resolved velocity and temperature data in compressible flows, especially near the wall. The major objective of this study is to demonstrate the capabilities of the Integral-Differential Scheme (IDS) by solving the flow field challenges within compressible boundary layers. It was demonstrated that IDS have the capability of accurately solving the full Navier-Stokes equations under realistic conditions. In the case of the compressible boundary layer, the IDS capture the flow field physics. However, it was demonstrated that the IDS is highly sensitive to grid resolution as well as the prescribed boundary conditions.
UR - https://www.scopus.com/pages/publications/85092332721
U2 - 10.2514/6.2020-1806
DO - 10.2514/6.2020-1806
M3 - Conference contribution
SN - 9781624105951
T3 - AIAA Scitech 2020 Forum
BT - AIAA Scitech 2020 Forum
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Scitech Forum, 2020
Y2 - 6 January 2020 through 10 January 2020
ER -