Abstract
In analyzing and designing control for unmanned aerial vehicles (UAVs), existence of transmission delays caused by wireless communication is one of the critical challenges. Estimation of the delays and analysis of their effects are not straightforward. A delay estimation method is introduced using transient responses of a quadrotor type of UAVs and analytical solutions of delay differential equations (DDEs). Experimental data sets in the time domain are compared to the predicted ones based on the analytical solutions of DDEs. The Lambert W function-based approach for first-order DDEs is used for the analysis. The dominant characteristic roots among an infinite number of roots are obtained in terms of coefficients and the delay. The effects of the time delay on the responses are analyzed via root locations. Based on the estimation result, proportional plus velocity controllers are proposed to improve transient altitude responses.
| Original language | English |
|---|---|
| Title of host publication | Advances in Delays and Dynamics |
| Publisher | Springer International Publishing |
| State | Published - 2017 |