Artificial Potential Field-Based Motion Planning/Navigation, Dynamic Constrained Optimization and Simple Genetic Hill Climbing

Gerry Dozier, Abdollah Homaifar, Sidney Bryson, Marwan Bikdash

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper we show a relationship between artificial potential field (APF) based motion planning/navigation, and constrained optimi zation. We then present a simple genetic hill climbing algorithm (SGHC), which is used to navigate a point robot through an environ ment using the APF approach. We compare SGHC with steepest descent hill climbing (SDHC). In SDHC, candidate moves are evaluated within a 360-degree radius and the best candidate is selected by the robot. One would think that SGHC would be at a disad vantage; however, the performance of SGHC is comparable with SDHC. SGHC has an advantage in that it is capable of evolving (learning) the appropriate step size as well as the appropriate angle of movement.

Original languageEnglish
Pages (from-to)168-181
Number of pages14
JournalSimulation
Volume71
Issue number3
DOIs
StatePublished - Sep 1998

Keywords

  • AGIE-3
  • Motion planning
  • NASA
  • artificial potential field
  • constrained optimization
  • genetic algorithms
  • navigation
  • robot
  • simple genetic hill climbing
  • steepest descent hill climbing

Cite this