TY - JOUR
T1 - Association of Per- and Polyfluoroalkyl Substances with Pan-Cancers Associated with Sex Hormones
AU - Olarewaju, Elizabeth
AU - Obeng-Gyasi, Emmanuel
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/6
Y1 - 2025/6
N2 - Per- and polyfluoroalkyl substances (PFASs) are ubiquitous environmental contaminants with potential endocrine-disrupting properties. This study examines the association between exposure to multiple PFASs and pan-cancers associated with sex hormones (PCSH) while accounting for potential non-linear relationships and interactions. We analyzed data from the National Health and Nutrition Examination Survey (NHANES), spanning two-year cycles from 1999 to 2012 and including 14,373 participants. Serum concentrations of six PFAS—perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorodecanoic acid (PFDE), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUA)—were assessed for their relationship with PCSH. The statistical analyses included descriptive statistics, Spearman and Pearson correlation analyses, and both linear and logistic regression models. Additionally, Bayesian kernel machine regression (BKMR) was applied to capture potential nonlinear relationships and interactions. The initial t-tests showed a statistically significant difference in PFOS levels between individuals with and without PCSH (p = 0.0022), with higher mean PFOS levels in the PCSH group. Chi-square tests revealed a significant association between ethnicity and PCSH (p < 0.001). Linear and logistic regression analyses revealed significant associations for PFOS. BKMR analysis identified PFOA as having the highest posterior inclusion probability, indicating its importance in explaining PCSH risk. Univariate exposure-response analysis revealed limited individual PFAS effects. However, bivariate analysis indicated a complex U-shaped interaction pattern among many joint PFAS assessments. The overall exposure effect analysis suggested that the combined impact of all PFASs was more strongly associated with PCSH at exposure levels below the 0.5 quantile compared to higher levels. Single-variable interaction analyses highlighted PFOA and PFOS as the most interactive PFASs when evaluating their interaction with combined exposure to all other PFASs. In summary, while the initial findings suggested a positive association between PFOS and PCSH, the BKMR analysis revealed complex non-linear relationships and interactions among PFAS. These findings highlight the importance of evaluating PFASs as a mixture rather than as individual chemicals and using techniques that can capture non-linear relationships and interactions.
AB - Per- and polyfluoroalkyl substances (PFASs) are ubiquitous environmental contaminants with potential endocrine-disrupting properties. This study examines the association between exposure to multiple PFASs and pan-cancers associated with sex hormones (PCSH) while accounting for potential non-linear relationships and interactions. We analyzed data from the National Health and Nutrition Examination Survey (NHANES), spanning two-year cycles from 1999 to 2012 and including 14,373 participants. Serum concentrations of six PFAS—perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorodecanoic acid (PFDE), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUA)—were assessed for their relationship with PCSH. The statistical analyses included descriptive statistics, Spearman and Pearson correlation analyses, and both linear and logistic regression models. Additionally, Bayesian kernel machine regression (BKMR) was applied to capture potential nonlinear relationships and interactions. The initial t-tests showed a statistically significant difference in PFOS levels between individuals with and without PCSH (p = 0.0022), with higher mean PFOS levels in the PCSH group. Chi-square tests revealed a significant association between ethnicity and PCSH (p < 0.001). Linear and logistic regression analyses revealed significant associations for PFOS. BKMR analysis identified PFOA as having the highest posterior inclusion probability, indicating its importance in explaining PCSH risk. Univariate exposure-response analysis revealed limited individual PFAS effects. However, bivariate analysis indicated a complex U-shaped interaction pattern among many joint PFAS assessments. The overall exposure effect analysis suggested that the combined impact of all PFASs was more strongly associated with PCSH at exposure levels below the 0.5 quantile compared to higher levels. Single-variable interaction analyses highlighted PFOA and PFOS as the most interactive PFASs when evaluating their interaction with combined exposure to all other PFASs. In summary, while the initial findings suggested a positive association between PFOS and PCSH, the BKMR analysis revealed complex non-linear relationships and interactions among PFAS. These findings highlight the importance of evaluating PFASs as a mixture rather than as individual chemicals and using techniques that can capture non-linear relationships and interactions.
KW - Bayesian kernel machine regression
KW - NHANES
KW - cancer biomarkers
KW - chemical mixtures
KW - environmental exposure
UR - https://www.scopus.com/pages/publications/105009053353
U2 - 10.3390/toxics13060501
DO - 10.3390/toxics13060501
M3 - Article
SN - 2305-6304
VL - 13
JO - Toxics
JF - Toxics
IS - 6
M1 - 501
ER -