Abstract
Two bimetallic Fe-Cu and Fe-Ca oxygen carriers were studied for chemical looping gasification (CLG) of biomass. The SEM results indicated that there was no obvious agglomeration on the bimetallic Fe-Cu oxygen carrier supported on Al2O3 and Fe-Ca oxygen carrier after five redox cycles while agglomeration occurred on CuO supported on Al2O3 due to the low melting point of CuO. The XRD results indicated the presence of copper-ferrite and calcium-ferrite phases in the bimetallic materials. The two bimetallic oxygen carriers can be re-oxidized with air to form a crystalline that is similar to the fresh materials. The Fe-Ca oxide became active at 360 ◦C which was lower than 380 ◦C for the Fe-Cu oxygen carrier. The high thermal stability and redox reactivity of bimetallic Fe-Cu and Fe-Ca oxygen carriers make the bimetallic oxygen carriers more suitable for recycling during CLG. The method for preparing Fe-Cu oxygen carriers had no significant impact on biomass conversion efficiency but had significant effect on the quality of syngas. Proper control of the biomass/oxygen carrier mass ratio is critical to achieve high selectivity towards gasification instead of combustion. The Fe-Ca oxygen carrier could achieve higher selectivity towards gasification than the Fe-Cu oxygen carrier.
| Original language | English |
|---|---|
| Article number | 2019 |
| Journal | Energies |
| Volume | 13 |
| Issue number | 8 |
| DOIs | |
| State | Published - Apr 2020 |
Keywords
- Bimetallic oxygen carrier
- Biomass
- Chemical looping
- Gasification
- Metal oxide