TY - JOUR
T1 - Effects of land transport stress on variations in ruminal microbe diversity and immune functions in different breeds of cattle
AU - Li, Fengpeng
AU - Shah, Ali Mujtaba
AU - Wang, Zhisheng
AU - Peng, Quanhui
AU - Hu, Rui
AU - Zou, Huawei
AU - Tan, Cui
AU - Zhang, Xiangfei
AU - Liao, Yupeng
AU - Wang, Yongjie
AU - Wang, Xueying
AU - Zeng, Lei
AU - Xue, Bai
AU - Wang, Lizhi
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/9
Y1 - 2019/9
N2 - Anti-stress is an emergent research point to current cattle industry. Land transport stress, a negative off-site fattening mode, causing a serious problems to beef cattle production, such as nutrition-metabolism, hormone secretion levels, and immune competence are imbalanced. In this paper we compared among Simmental Crossbred Cattle (SC), Native Yellow Cattle (NY), and Cattle Yak (CY) about ruminal microbe diversity and immune functions before and after transportation. The results showing that transport stress leads to increase secretion of hormone, both pro-inflammatory cytokines and rumen lipopolysaccharide. Meanwhile, the ruminal microbiota OTUs, Chao1, and Shannon were also changed, and Prevotella1 in NY group was higher than other groups before transport; after transport Firmicutes and Lactobacillus were increased than other groups in CY. The rumen microbiota also related with serum cytokine. Under transport stress, rumen microbiota affect the secretion of hormone levels and immune functions and breed factors affect the performance of stress resistance. The intensity and specialization of beef cattle production make off-site fattening, and introduce new breeds need transportation to achieve the goals. The present study was aimed to investigate effects of land transport stress on hormones levels, microbial fermentation, microbial composition, immunity and correlation among them among Simmental Crossbred Cattle (SC), Native Yellow Cattle (NY), and Cattle Yak (CY). High-throughput sequencing was used to investigate the rumen microbial diversity. After transport stress cortisol (COR), adrenocorticotropic hormone (ACTH) and pro-inflammatory cytokines IL-6, TNF-a, and IL-1β were increased (p < 0.05) in all groups. Rumen lipopolysaccharide (LPS) was increased (p < 0.05) in SC and CY groups. Total volatile fatty acids were increased (p < 0.05) in all groups. The ruminal microbiota about OTUs, Chao1, and Shannon in SC and CY groups were higher than before transport. Prevotella1 in NY group was higher (p < 0.05) than other groups before transport; after transport Firmicutes and Lactobacillus were increased (p < 0.05) than other groups in CY. Lactobacillus was positively correlated with IL-6 and IL-4. Under transport stress, cattle may suffer from inflammatory response through modulating HPA axis and microbiota metabolite affects the secretion of hormone levels and immune function and breeds factor affect the performance of stress resistance.
AB - Anti-stress is an emergent research point to current cattle industry. Land transport stress, a negative off-site fattening mode, causing a serious problems to beef cattle production, such as nutrition-metabolism, hormone secretion levels, and immune competence are imbalanced. In this paper we compared among Simmental Crossbred Cattle (SC), Native Yellow Cattle (NY), and Cattle Yak (CY) about ruminal microbe diversity and immune functions before and after transportation. The results showing that transport stress leads to increase secretion of hormone, both pro-inflammatory cytokines and rumen lipopolysaccharide. Meanwhile, the ruminal microbiota OTUs, Chao1, and Shannon were also changed, and Prevotella1 in NY group was higher than other groups before transport; after transport Firmicutes and Lactobacillus were increased than other groups in CY. The rumen microbiota also related with serum cytokine. Under transport stress, rumen microbiota affect the secretion of hormone levels and immune functions and breed factors affect the performance of stress resistance. The intensity and specialization of beef cattle production make off-site fattening, and introduce new breeds need transportation to achieve the goals. The present study was aimed to investigate effects of land transport stress on hormones levels, microbial fermentation, microbial composition, immunity and correlation among them among Simmental Crossbred Cattle (SC), Native Yellow Cattle (NY), and Cattle Yak (CY). High-throughput sequencing was used to investigate the rumen microbial diversity. After transport stress cortisol (COR), adrenocorticotropic hormone (ACTH) and pro-inflammatory cytokines IL-6, TNF-a, and IL-1β were increased (p < 0.05) in all groups. Rumen lipopolysaccharide (LPS) was increased (p < 0.05) in SC and CY groups. Total volatile fatty acids were increased (p < 0.05) in all groups. The ruminal microbiota about OTUs, Chao1, and Shannon in SC and CY groups were higher than before transport. Prevotella1 in NY group was higher (p < 0.05) than other groups before transport; after transport Firmicutes and Lactobacillus were increased (p < 0.05) than other groups in CY. Lactobacillus was positively correlated with IL-6 and IL-4. Under transport stress, cattle may suffer from inflammatory response through modulating HPA axis and microbiota metabolite affects the secretion of hormone levels and immune function and breeds factor affect the performance of stress resistance.
KW - Cattle breeds
KW - High-throughput sequencing
KW - Microorganism immunity
KW - Rumen bacteria
KW - Transport stress
UR - https://www.scopus.com/pages/publications/85073282193
U2 - 10.3390/ani9090599
DO - 10.3390/ani9090599
M3 - Article
SN - 2076-2615
VL - 9
JO - Animals
JF - Animals
IS - 9
M1 - 599
ER -