TY - JOUR
T1 - Explainable artificial intelligence and agile decision-making in supply chain cyber resilience
AU - Sadeghi R, Kiarash
AU - Ojha, Divesh
AU - Kaur, Puneet
AU - Mahto, Raj V
AU - Dhir, Amandeep
AU - Sadeghi, Javad
PY - 2024
Y1 - 2024
N2 - Although artificial intelligence can contribute to decision-making processes, many industry players lag behind pioneering companies in utilizing artificial intelligence-driven technologies, which is a significant problem. Explainable artificial intelligence can be a viable solution to mitigate this problem. This paper proposes a research model to address how explainable artificial intelligence can impact decision-making processes. Using an experimental design, empirical data is collected to test the research model. This paper is one of the pioneer papers providing empirical evidence about the impact of explainable artificial intelligence on supply chain decision-making processes. We propose a serial mediation path, which includes transparency and agile decision-making. Findings reveal that explainable artificial intelligence enhances transparency, thereby significantly contributing to agile decision-making for improving cyber resilience during supply chain cyberattacks. Moreover, we conduct a post hoc analysis using text analysis to explore the themes present in tweets discussing explainable artificial intelligence in decision support systems. The results indicate a predominantly positive attitude towards explainable artificial intelligence within these systems. Furthermore, the text analysis reveals two main themes that emphasize the importance of transparency, explainability, and interpretability in explainable artificial intelligence.
AB - Although artificial intelligence can contribute to decision-making processes, many industry players lag behind pioneering companies in utilizing artificial intelligence-driven technologies, which is a significant problem. Explainable artificial intelligence can be a viable solution to mitigate this problem. This paper proposes a research model to address how explainable artificial intelligence can impact decision-making processes. Using an experimental design, empirical data is collected to test the research model. This paper is one of the pioneer papers providing empirical evidence about the impact of explainable artificial intelligence on supply chain decision-making processes. We propose a serial mediation path, which includes transparency and agile decision-making. Findings reveal that explainable artificial intelligence enhances transparency, thereby significantly contributing to agile decision-making for improving cyber resilience during supply chain cyberattacks. Moreover, we conduct a post hoc analysis using text analysis to explore the themes present in tweets discussing explainable artificial intelligence in decision support systems. The results indicate a predominantly positive attitude towards explainable artificial intelligence within these systems. Furthermore, the text analysis reveals two main themes that emphasize the importance of transparency, explainability, and interpretability in explainable artificial intelligence.
M3 - Article
VL - 180
SP - 114194
JO - Decision Support Systems
JF - Decision Support Systems
ER -