Full-order distributed fault diagnosis for large-scale nonlinear stochastic systems

Elaheh Noursadeghi, Ioannis Raptis

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper deals with the problem of designing a distributed fault detection and isolation algorithm for nonlinear large-scale systems that are subjected to multiple fault modes. To solve this problem, a network of detection nodes is deployed to monitor the monolithic system. Each node consists of an estimator with partial observation of the system's state. The local estimator executes a distributed variation of the particle filtering algorithm; that process the local sensor measurements and the fault progression model of the system. In addition, each node communicates with its neighbors by sharing pre-processed information. The communication topology is defined using graph theoretic tools. The information fusion between the neighboring nodes is performed by a distributed average consensus algorithm to ensure the agreement on the value of the local estimates. The simulation results demonstrate the efficiency of the proposed approach.

Original languageEnglish
Title of host publicationDiagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791857250
DOIs
StatePublished - 2015
Externally publishedYes
EventASME 2015 Dynamic Systems and Control Conference, DSCC 2015 - Columbus, United States
Duration: Oct 28 2015Oct 30 2015

Publication series

NameASME 2015 Dynamic Systems and Control Conference, DSCC 2015
Volume2

Conference

ConferenceASME 2015 Dynamic Systems and Control Conference, DSCC 2015
Country/TerritoryUnited States
CityColumbus
Period10/28/1510/30/15

Fingerprint

Dive into the research topics of 'Full-order distributed fault diagnosis for large-scale nonlinear stochastic systems'. Together they form a unique fingerprint.

Cite this