Magnesium incorporated polycaprolactone-based composite nanofibers

Nava P. Rijal, Udhab Adhikari, Narayan Bhattarai

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recent advances in developing composite nanofibers are of great interest for scientific community due to their wide range of potential applications in biomedical engineering such as drug delivery, wound healing, tissue engineering and implant coatings. Here, we present a fabrication of Mg incorporated polycaprolactone/low molecular weight chitosan (PCL/LMWCS) composite nanofiber via an electrospinning technique. PCL, a synthetic polymer, has good mechanical properties, whereas, chitosan, a natural polymer, has good bio-functional properties and good cell adhesion properties. Furthermore, magnesium is the second most abundant intracellular cation in the body and is important to metabolism. These nanofibers were characterized by using Scanning Electron Microscopy (SEM), ImageJ, and Instron Universal Testing Machine.

Original languageEnglish
Title of host publicationEmerging Technologies; Safety Engineering and Risk Analysis; Materials
Subtitle of host publicationGenetics to Structures
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791857571
DOIs
StatePublished - 2015
EventASME 2015 International Mechanical Engineering Congress and Exposition, IMECE 2015 - Houston, United States
Duration: Nov 13 2015Nov 19 2015

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume14-2015

Conference

ConferenceASME 2015 International Mechanical Engineering Congress and Exposition, IMECE 2015
Country/TerritoryUnited States
CityHouston
Period11/13/1511/19/15

Fingerprint

Dive into the research topics of 'Magnesium incorporated polycaprolactone-based composite nanofibers'. Together they form a unique fingerprint.

Cite this