Mechanistic studies of inhibition on acrolein by myricetin

Dingmin Zhang, Xiaoyun Jiang, Liubang Xiao, Yongling Lu, Shengmin Sang, Lishuang Lv, Wenjiang Dong

Research output: Contribution to journalArticlepeer-review

Abstract

Acrolein (ACR) is an unsaturated aldehyde with high activity and toxicity and is produced in vivo and in food. This study investigated the impact of B-ring structure on the trapping of ACR by flavonols and the trapping mechanism and efficacy of ACR by myricetin. Galangin, kaempferol, quercetin, and myricetin, which possess the same A- and C-ring but different numbers of –OH groups on the B-ring, were selected for this study. Our results suggested that increasing the number of –OH groups on the B-ring can enhance the ACR trapping efficacy of flavonol and myrectin was identified as the most active flavonol. The adducts of myricetin with ACR under different ratios and incubation times were analyzed using LC-MS/MS. We also purified and identified the major mono- and di-ACR-myricetin adducts. Furthermore, myricetin could dose-dependently inhibit the formation of ACR in cookies through the formation of mono- and di-ACR adducts.

Original languageEnglish
Article number126788
JournalFood Chemistry
Volume323
DOIs
StatePublished - Sep 1 2020

Keywords

  • Acrolein (PubChem CID:7847)
  • Cookies
  • Inhibitory mechanism
  • Myricetin (PubChem CID: 5281672)

Fingerprint

Dive into the research topics of 'Mechanistic studies of inhibition on acrolein by myricetin'. Together they form a unique fingerprint.

Cite this