Mesoporous ceramic membranes for non-aqueous separations: Surface modification and solvent permeability

Geoffrey D. Bothun, Shamsuddin Ilias, Vincent Morehead, Katif Peay

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The permeability of water, ethanol, hexane, and liquid CO2 at 70 bar and 298 K through mesoporous native titania and alumina membranes was studied as well as those modified with C8 fluorocarbon and hydrocarbon silanes. Borrowing from silane grafting techniques developed for gas separation membranes, commercial 1 kDa titania and 5 nm alumina membranes were functionalized with octyltrichlorosilane and its fluorinated analog, trichloro(1H,1H,2H,2H-perfluorooctyl)-silane. Using this approach, the surface thickness of silane was similar (≈ 1.1 nm), while the "tail" chemical composition was different. Fluoroalkylsilane and alkylsilane modified membranes were referred to as C8F and C8H, respectively. In the C8H membranes, gas permeability measurements revealed pore opening with increasing pressure, consistent with tail mobility. Comparatively, gas permeability in the C8F analog was an order of magnitude lower due to the bulkier fluorinated tails. These results were consistent with recent gas separation studies. This is an abstract of a paper presented at the 2006 AIChE National Meeting (San Francisco, CA 11/12-17/2006).

Original languageEnglish
Title of host publication2006 AIChE Annual Meeting
StatePublished - 2006
Event2006 AIChE Annual Meeting - San Francisco, CA, United States
Duration: Nov 12 2006Nov 17 2006

Publication series

NameAIChE Annual Meeting, Conference Proceedings

Conference

Conference2006 AIChE Annual Meeting
Country/TerritoryUnited States
CitySan Francisco, CA
Period11/12/0611/17/06

Fingerprint

Dive into the research topics of 'Mesoporous ceramic membranes for non-aqueous separations: Surface modification and solvent permeability'. Together they form a unique fingerprint.

Cite this