TY - JOUR
T1 - Network-Based Intrusion Detection for Industrial and Robotics Systems: A Comprehensive Survey
AU - Holdbrook, Richard
AU - Odeyomi, Olusola
AU - Yi, Sun
AU - Roy, Kaushik
PY - 2024
Y1 - 2024
N2 - In the face of rapidly evolving cyber threats, network-based intrusion detection systems (NIDS) have become critical to the security of industrial and robotic systems. This survey explores the specialized requirements, advancements, and challenges unique to deploying NIDS within these environments, where traditional intrusion detection systems (IDS) often fall short. This paper discusses NIDS methodologies, including machine learning, deep learning, and hybrid systems, which aim to improve detection accuracy, adaptability, and real-time response. Additionally, this paper addresses the complexity of industrial settings, limitations in current datasets, and the cybersecurity needs of cyber–physical Systems (CPS) and Industrial Control Systems (ICS). The survey provides a comprehensive overview of modern approaches and their suitability for industrial applications by reviewing relevant datasets, emerging technologies, and sector-specific challenges. This underscores the importance of innovative solutions, such as federated learning, blockchain, and digital twins, to enhance the security and resilience of NIDS in safeguarding industrial and robotic systems.
AB - In the face of rapidly evolving cyber threats, network-based intrusion detection systems (NIDS) have become critical to the security of industrial and robotic systems. This survey explores the specialized requirements, advancements, and challenges unique to deploying NIDS within these environments, where traditional intrusion detection systems (IDS) often fall short. This paper discusses NIDS methodologies, including machine learning, deep learning, and hybrid systems, which aim to improve detection accuracy, adaptability, and real-time response. Additionally, this paper addresses the complexity of industrial settings, limitations in current datasets, and the cybersecurity needs of cyber–physical Systems (CPS) and Industrial Control Systems (ICS). The survey provides a comprehensive overview of modern approaches and their suitability for industrial applications by reviewing relevant datasets, emerging technologies, and sector-specific challenges. This underscores the importance of innovative solutions, such as federated learning, blockchain, and digital twins, to enhance the security and resilience of NIDS in safeguarding industrial and robotic systems.
UR - https://dx.doi.org/10.3390/electronics13224440
U2 - 10.3390/electronics13224440
DO - 10.3390/electronics13224440
M3 - Article
SN - 2079-9292
VL - 13
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - Issue 22
ER -