TY - JOUR
T1 - Sonocrystallization of Interesterified Soybean Oil: Effect of Saturation Level and Supercooling
AU - Lee, Juhee
AU - Silva, Roberta C
AU - Gibon, Veronique
AU - Martini, Silvana
AU - Claro Da Silva, Roberta
PY - 2018
Y1 - 2018
N2 - The aim of this study was to investigate the effects of supercooling and degree of saturation on lipid sonocrystallization under similar driving force of crystallization. Samples consisting of 100%, 50%, and 20% interesterified soybean oil (IESBO) diluted in high-oleic sunflower oil (HOSFO) were crystallized with and without high-intensity ultrasound (HIU). Two power levels were used by changing the amplitude of vibration of the tip (24 μm and 108 μm of tip amplitude). HIU operating at a frequency of 20 kHz was applied for 10 s. Sonication induced crystallization in the 100% IESBO sample and sonication power did not affect the results. A greater induction in crystallization was observed whenhigherpowerlevelswereusedinthe50%IESBOsample,whilenoeffectwasobservedinthecrystallizationkinetics of the 20% IESBO samples. Changes in the crystallization kinetics affected physical properties of the material, influencing elasticity. For example, sonication increased the elasticity of the 100% IESBO sample for both tip amplitudes from 435.9 ±173.3 Pa to 72735.0±9547.9 Pa for the nonsonicated and sonicated samples using 108 μm of amplitude, respectively. However, sonication only increased the elasticity in the 50% sample when used at the higher power level of 108 μm from 564.2 ± 175.2 Pa to 21774.0 ± 5694.9 Pa, and it did not affect the elasticity of the 20% IESBO samples. These results show that the level of saturation and the degree of supercooling affect sonication efficiency.
AB - The aim of this study was to investigate the effects of supercooling and degree of saturation on lipid sonocrystallization under similar driving force of crystallization. Samples consisting of 100%, 50%, and 20% interesterified soybean oil (IESBO) diluted in high-oleic sunflower oil (HOSFO) were crystallized with and without high-intensity ultrasound (HIU). Two power levels were used by changing the amplitude of vibration of the tip (24 μm and 108 μm of tip amplitude). HIU operating at a frequency of 20 kHz was applied for 10 s. Sonication induced crystallization in the 100% IESBO sample and sonication power did not affect the results. A greater induction in crystallization was observed whenhigherpowerlevelswereusedinthe50%IESBOsample,whilenoeffectwasobservedinthecrystallizationkinetics of the 20% IESBO samples. Changes in the crystallization kinetics affected physical properties of the material, influencing elasticity. For example, sonication increased the elasticity of the 100% IESBO sample for both tip amplitudes from 435.9 ±173.3 Pa to 72735.0±9547.9 Pa for the nonsonicated and sonicated samples using 108 μm of amplitude, respectively. However, sonication only increased the elasticity in the 50% sample when used at the higher power level of 108 μm from 564.2 ± 175.2 Pa to 21774.0 ± 5694.9 Pa, and it did not affect the elasticity of the 20% IESBO samples. These results show that the level of saturation and the degree of supercooling affect sonication efficiency.
M3 - Article
SP - 9
JO - Journal of food science
JF - Journal of food science
ER -