TY - GEN
T1 - Stiffness degradation of digital polypropylene under fatigue loading - Investigations via 3-dimensional polyjet printed coupons
AU - Tomar, Ravi Pratap Singh
AU - Ulu, Furkan I.
AU - Kelkar, Ajit
AU - Mohan, Ram V.
N1 - Publisher Copyright:
© 2020 ASME.
PY - 2020
Y1 - 2020
N2 - The utilization of additively manufactured parts is gaining popularity in functional applications. Polymer-based additive manufacturing (AM) parts are utilized in a variety of engineering applications for automotive, aerospace, and energy. AM printed parts are however newer class of materials, and structural performance of these materials is not fully understood completely, and very limited exists currently on precisely performance of Polyjet printed parts and associated digital materials under fatigue loading. This paper investigates the stiffness degradation under tension-tension fatigue loading of digital polypropylene using homogenous 3-Dimensional test coupons formed using PolyJet printing. Homogeneous 3-Dimensional test configuration employed in the present study eliminates the process-induced limitations of traditional ASTM D638 2D fatigue test coupons for AM processed materials. Fatigue data is analyzed to present an empirical model of effective elastic modulus and an analytical model of the accumulated damage state, as defined on the basis of stiffness degradation during cyclic loading. Further, the actual damage accumulation due to cyclic loading with the predicted model is compared. Modeling of the S-N diagram provides a better estimation of fatigue life and fatigue life modeling of AM printed test coupons and is obtained via linear regression analysis of experimental data with high correlation coefficient R2 (0.9971). The analytical model of the accumulated damage state is based on the stiffness degradation and is derived from the regression analysis of experimental data of stiffness degradation at different loading percentages assuming a polynomial of degree 4. Present study provides insight into the fatigue damage state and cyclic performance of digital polypropylene from Polyjet printing.
AB - The utilization of additively manufactured parts is gaining popularity in functional applications. Polymer-based additive manufacturing (AM) parts are utilized in a variety of engineering applications for automotive, aerospace, and energy. AM printed parts are however newer class of materials, and structural performance of these materials is not fully understood completely, and very limited exists currently on precisely performance of Polyjet printed parts and associated digital materials under fatigue loading. This paper investigates the stiffness degradation under tension-tension fatigue loading of digital polypropylene using homogenous 3-Dimensional test coupons formed using PolyJet printing. Homogeneous 3-Dimensional test configuration employed in the present study eliminates the process-induced limitations of traditional ASTM D638 2D fatigue test coupons for AM processed materials. Fatigue data is analyzed to present an empirical model of effective elastic modulus and an analytical model of the accumulated damage state, as defined on the basis of stiffness degradation during cyclic loading. Further, the actual damage accumulation due to cyclic loading with the predicted model is compared. Modeling of the S-N diagram provides a better estimation of fatigue life and fatigue life modeling of AM printed test coupons and is obtained via linear regression analysis of experimental data with high correlation coefficient R2 (0.9971). The analytical model of the accumulated damage state is based on the stiffness degradation and is derived from the regression analysis of experimental data of stiffness degradation at different loading percentages assuming a polynomial of degree 4. Present study provides insight into the fatigue damage state and cyclic performance of digital polypropylene from Polyjet printing.
KW - 3D configuration
KW - Material jetting
KW - Mix material behavior
KW - Multi-material
UR - https://www.scopus.com/pages/publications/85101189771
U2 - 10.1115/IMECE2020-24156
DO - 10.1115/IMECE2020-24156
M3 - Conference contribution
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Advanced Materials
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2020 International Mechanical Engineering Congress and Exposition, IMECE 2020
Y2 - 16 November 2020 through 19 November 2020
ER -