TY - GEN
T1 - The design and performance evaluation of hypersonic inlets for scramjet applications
AU - Ferguson, Frederick
AU - Lawrence, Thomas
AU - Dhanasar, Mookesh
AU - Blankson, Isaiah M.
N1 - Publisher Copyright:
© 2015 by the American Institute of Aeronautics and Astronautics, Inc.
PY - 2015
Y1 - 2015
N2 - A literature survey, conducted as part of this research effort, revealed that the morphing RAM-SCRAMJET model1-3, has many attractive engineering characteristics and is worthy of a realsitic engineering evaluation. The objective of this effort is to improve on the RAM-SCRAMJET model by incorporating real-world effects into the design process. In accomplishing this goal, a quasi-one-dimensional flow field solver with capabilities of modeling the real-world effects was developed, coded in object oriented FORTRAN, and incorporated into the NCAT original model. The improved quasi-one-dimensional flow field solver is based on the Runge-Kutta 4th order method for solving systems of differential equations. In principle, the new solver allows for the flow field evaluation within arbitrary shaped ducts in which the influences of ‘area change’, ‘friction’, ‘heating’ and ‘chemistry’ may be of importance. Prior to incorporating the new solver into the NCAT RAM-SCRAMJET model, a detailed validation study was conducted. These tests demonstrated that the ‘area change’ and ‘friction’ capabilities performed as expected. Unfortunately, the ‘heating’ and ‘chemistry’ capability did not, and as such these capabilities were not added to the NCAT model. Now, with improved but limited real-world capability, the NCAT RAM-SCRAMJET model was used to conduct an updated system performance study. Engineering tests were conducted in the Mach number range of 4 through 12. Results showed the improved RAM/SCRAM jet code performs well at low Mach numbers, but did not compare well with independent efforts in the high Mach number region. At this stage, the difference is attributed to the fact that the new flow field solver cannot predict the effects of heating well.
AB - A literature survey, conducted as part of this research effort, revealed that the morphing RAM-SCRAMJET model1-3, has many attractive engineering characteristics and is worthy of a realsitic engineering evaluation. The objective of this effort is to improve on the RAM-SCRAMJET model by incorporating real-world effects into the design process. In accomplishing this goal, a quasi-one-dimensional flow field solver with capabilities of modeling the real-world effects was developed, coded in object oriented FORTRAN, and incorporated into the NCAT original model. The improved quasi-one-dimensional flow field solver is based on the Runge-Kutta 4th order method for solving systems of differential equations. In principle, the new solver allows for the flow field evaluation within arbitrary shaped ducts in which the influences of ‘area change’, ‘friction’, ‘heating’ and ‘chemistry’ may be of importance. Prior to incorporating the new solver into the NCAT RAM-SCRAMJET model, a detailed validation study was conducted. These tests demonstrated that the ‘area change’ and ‘friction’ capabilities performed as expected. Unfortunately, the ‘heating’ and ‘chemistry’ capability did not, and as such these capabilities were not added to the NCAT model. Now, with improved but limited real-world capability, the NCAT RAM-SCRAMJET model was used to conduct an updated system performance study. Engineering tests were conducted in the Mach number range of 4 through 12. Results showed the improved RAM/SCRAM jet code performs well at low Mach numbers, but did not compare well with independent efforts in the high Mach number region. At this stage, the difference is attributed to the fact that the new flow field solver cannot predict the effects of heating well.
UR - https://www.scopus.com/pages/publications/84982893700
U2 - 10.2514/6.2015-1666
DO - 10.2514/6.2015-1666
M3 - Conference contribution
SN - 9781624103438
T3 - 53rd AIAA Aerospace Sciences Meeting
BT - 53rd AIAA Aerospace Sciences Meeting
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - 53rd AIAA Aerospace Sciences Meeting, 2015
Y2 - 5 January 2015 through 9 January 2015
ER -